A double-module immune algorithm for multi-objective optimization problems
نویسندگان
چکیده
منابع مشابه
A FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING PROBLEMS
The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle ...
متن کاملA Novel Coral Reefs Optimization Algorithm for Multi-objective Problems
In this paper we detail a new algorithm for multi-objective optimization, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of the coral reefs processes, including corals’ reproduction and fight for the space in the reef. The adaptation to multi-objective problems is an easy process based on domination or non-domination during the process ...
متن کاملA New Evolutionary Algorithm for Multi-objective Optimization Problems
Among the currently successful Evolutionary Multi-Objective Algorithms (MOEAs), elitism and no sharing factor are two common characteristics and have been demonstrated to improve performance significantly. Based on these two principles, two heuristics, with which impressive improvements were showed in single objective optimization, are introduced in a newly designed EMOA in this paper: multi-pa...
متن کاملA Population Adaptive Based Immune Algorithm for Solving Multi-objective Optimization Problems
The primary objective of this paper is to put forward a general framework under which clear definitions of immune operators and their roles are provided. To this aim, a novel Population Adaptive Based Immune Algorithm (PAIA) inspired by Clonal Selection and Immune Network theories for solving multi-objective optimization problems (MOP) is proposed. The algorithm is shown to be insensitive to th...
متن کاملNeighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems
In this paper, we propose a new genetic algorithm for multi-objective optimization problems. That is called “Neighborhood Cultivation Genetic Algorithm (NCGA)”. NCGA includes the mechanisms of other methods such as SPEA2 and NSGA-II. Moreover, NCGA has the mechanism of neighborhood crossover. Because of the neighborhood crossover, the effective search can be performed and good results can be de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Soft Computing
سال: 2015
ISSN: 1568-4946
DOI: 10.1016/j.asoc.2015.06.022